
plex
d/or
ve the
ystems
puters.
cing
nted
ch-
each

 a
y data.
om-
ntly
modi-
he

re-
faster
on
r the

 prob-
n work-
MP)
 these
992)
ock
ing
ccess-
ed to
his
Multi-Processing CTH: Porting Legacy FORTRAN Code to MP Hardware (U)

R. L. Bell, M. G. Elrick, and E. S. Hertel, Jr.

Sandia National Laboratories

Abstract

CTH is a family of codes developed at Sandia National Laboratories for use in modeling com
multi-dimensional, multi-material problems that are characterized by large deformations an
strong shocks. A two-step, second-order accurate Eulerian solution algorithm is used to sol
mass, momentum, and energy conservation equations. CTH has historically been run on s
where the data are directly accessible to the cpu, such as workstations and vector supercom
Multiple cpus can be used if all data are accessible to all cpus. This is accomplished by pla
compiler directives or subroutine calls within the source code. The CTH team has impleme
this scheme for Cray shared memory machines under the Unicos operating system. This te
nique is effective, but difficult to port to other (similar) shared memory architectures because
vendor has a different format of directives or subroutine calls. (U)

A different model of high performance computing is one where many (>1000) cpus work on
portion of the entire problem and communicate by passing messages that contain boundar
Most, if not all, codes that run effectively on parallel hardware were written with a parallel c
puting paradigm in mind. Modifying an existing code written for serial nodes poses a significa
different set of challenges that will be discussed. CTH, a legacy FORTRAN code, has been
fied to allow for solutions on distributed memory parallel computers such as the IBM SP2, t
Intel Paragon, Cray T3D, or a network of workstations. (U)

The message passing version of CTH will be discussed and example calculations will be p
sented along with performance data. Current timing studies indicate that CTH is 2-3 times 
than equivalent C++ code written specifically for parallel hardware. CTH on the Intel Parag
exhibits linear speed up with problems that are scaled (constant problem size per node) fo
number of parallel nodes. (U)

Introduction

The future of high performance computing is directed at scalable parallel computers where
lems are solved by breaking a large domain into many small sub-domains. Sandia has bee
ing in the development of tools (Robinson, 1992 and McGlaun, 1995) for massively parallel (
computers for several years. Up to this time the emphasis has been on the development of
tools from scratch, not in the porting of existing codes to MP machines. PCTH (Robinson, 1
was developed to solve the conservation equations of mass, momentum, and energy for sh
physics. In this case, the algorithms used in CTH (McGlaun, 1990) were reprogrammed us
C++ and a message passing concept for the parallelization. This effort proved to be very su
ful in that we demonstrated effective use of MP computers. For a variety of reasons, we decid
take the knowledge gained in the development of PCTH and port CTH to MP computers. T
paper is a description of the techniques used to port CTH to MP computers. (U)



cur-
ent
ary to

at the
he
ry
orted
phys-

this
 (local)
 in
m to

el Par-
uta-

 is
e exe-
rent
map

t the
al
re han-
use of

. For
roxima-
sage
Assumptions and Background

We assumed that CTH would continue to be used on a variety of computing platforms. We 
rently support CTH on all major Unix workstations and Cray vector computers. This requirem
meant that the core functionality of CTH could not be compromised and the changes necess
port CTH to MP computers must co-exist with the serial code. Furthermore, we required th
MP code give identical results regardless of number of nodes used to solve the problem. T
emphasis for MP was (and is) three-dimensional simulations, but we would port all geomet
options to MP computers. We would implement machine specific changes in a way that supp
portability in message passing interfaces. We would port all possible numerical features and
ical models to MP computers that were cast as “local” to each computational cell. Local in 
sense means that the solution can be advanced one time step based on information in the
computational cell or in its neighboring cells. This locality restriction affects only one model
the current version of CTH. Given these restrictions and requirements, we initiated a progra
port CTH to MP computers. (U)

Distributed data MP computers are characterized by a number (generally large, Sandia’s Int
agon has ~1800 nodes and DOE’s ASCI Red Machine has ~9000 nodes) of discrete comp
tional nodes consisting of memory, a commodity cpu chip, and access to an internal
communications network. One computing technique that can be employed on this machine
referred to as single program multiple data (SPMD). It is referred to SPMD because the sam
cutable is running on each computational node, but each executable is working with a diffe
data set. Algorithms that depend on a fixed logically connected mesh are relatively simple to
onto a SPMD machine. The technique used for CTH is similar to that used for PCTH in tha
entire problem domain is broken up into sub-domains that reside on individual computation
nodes. Communication between nodes (each containing separate regions of global mesh) a
dled by the use of “ghost cells” and explicit messages that CTH passes between nodes. The
“ghost cells” is a typical technique for applying boundary conditions in Eulerian codes. The
“ghost cells” allow for the finite-difference equations to be independent of edges and corners
an external boundary, the ghost cell data are based on the selected boundary condition app
tion. For an internal boundary, the ghost cells contain real data that was acquired in a mes
passed from a neighboring node. A simple example of mesh decomposition is displayed in
Figure 1. (U)

Figure 1: CTH Mesh Decomposition Scheme

Domain

Sub-domains

Messages



e pur-
GEN
TH
gra-
at
ber of
 prob-
mount
lose to
rface

em has
 the
tion of
 in
ts it to
le. At

 time
hboring
quence

here
ists of
 are
osity
e
viators
new
 is
active
p, all

 Leer
three

ary. If
ation
host
 cell
ly the
which
 to the
hat
By
CTH Solution Sequence and Message Passing Process

CTH is a family of several codes that work together to solve shock physics problems. For th
poses of this paper only two of the codes need to be considered, CTHGEN and CTH. CTH
reads the user input and builds a time-zero representation of the problem specifications. C
reads additional user input and the time-zero data from CTHGEN and initiates the time inte
tion process. Very little of this process changes for MP computers. The copy of CTHGEN th
runs on node 0 reads the user input and broadcasts it to all other nodes. Given the total num
nodes requested by the user and the total problem size, CTHGEN decides how to map the
lem space onto the nodes. The algorithm it uses to build the sub-domains is to equalize the a
of work on each node (equal number of cells per node) and to keep each sub-domain as c
cubic as possible. The requirement for cubic sub-domains is for two reasons, minimize the su
to volume ratio and to make the message data volume as equal as possible. Once the probl
been mapped onto the available nodes, the individual copies of CTHGEN insert material in
respective sub-domains, define material properties, and complete the time-zero representa
the problem specifications (“building the database” is the typical nomenclature). CTH starts
much the same way, the copy of CTH that runs on node 0 reads the user input and broadcas
all other nodes. Once the broadcast is complete, each node reads its individual database fi
this point, the time integration starts. (U)

The solution sequence for CTH has not been changed for MP computing. Essentially every
the ghost cell values have been changed, CTH must exchange these new values with neig
nodes before the updated values are used in the solution sequence. The overall solution se
of CTH is a Lagrangian step followed by a remap and then a database modification step w
materials may be discarded or velocity transformations applied. The Lagrangian step cons
several tasks. The first is where the artificial viscosity is defined, during this task messages
exchanged with neighbors to calculate the correct boundary values. Once the artificial visc
and pressure are defined, CTH calculates the new cell velocities. The new cell velocities ar
exchanged with neighboring nodes. The new cell velocities are used to update the stress de
at this time and then the new stress deviators are exchanged with neighboring nodes. The 
stress deviator information leads to new energy terms from the PdV work. After the energy
updated, the Lagrangian step is effectively complete. Special models like the multi-phase re
flow package perform tasks to prepare for the remap step. At the end of the Lagrangian ste
ghost cell values are exchanged for the last (fourth) time. (U)

CTH uses a second order accurate advection scheme. This scheme, based on work by van
(1977), determines a linear slope across each “donor” cell. To calculate this slope, data from
cells are required, the donor cell, the cell upstream, and the cell downstream. A given node
“knows” the values in the ghost cell, the first real cell, and the next cell near a nodal bound
the flow is “outward” (from the last real cell into the ghost cell) the code has enough inform
to calculate the slope across the donor cell (the last real cell). However, if flow is from the g
cell into the first real cell, the code does not have information about the “upstream” cell (the
beyond the ghost cell). But, if a node shares this boundary, the inflow for this node is exact
same as the “outflow” for the adjacent node. So we have developed a new set of subroutines
calculate “outflow” values for each node boundary. These values are collected and passed
adjacent nodes. If a node calculates an “inflow” value and finds that another node shares t
boundary, the value from the message is used rather than the incorrectly calculated value. 



licate

st cell
Eule-
ged
remap
oring
se CTH
quires
aterial
anged.
me
ate for
steps in
lobal
time

er data
can
the
he vol-
a flag
 as
n flag
ot a
rdi-
en near-
g the
d with
ordi-
coordi-
ate the
acer

sed dur-
rge mes-
,

l small
ssed dur-

ting
using the second order accurate “outflow” value from the adjacent node we are able to dup
results from single-node simulations with MP simulations. (U)

Several exchanges must be completed during the Eulerian (or remap) step. Each time gho
values are modified, data must be exchanged with neighboring nodes. The first task in the 
rian driver converts volume fraction values to volumes, new ghost cell data must be exchan
with neighbor nodes. CTH uses an operator split scheme for the remap step. Each time the
is completed in a particular direction, the ghost cell values must be exchanged with neighb
nodes. During this step momenta and updated mass values must also be exchanged becau
uses the half index shifted momentum advection scheme of Benson (1991). This method re
correct velocities at the node mesh boundaries. Since velocities on the edges of isolated m
cells are also modified during the remap step, these corrected velocities must also be exch
Finally, after all remap steps have been completed, the volumes are converted back to volu
fractions and the Eulerian energy balance is accomplished. This step calls the equation of st
each material yielding new cell pressures, temperatures, and sound speeds. One of the last
the remap is to calculate the minimum time step, this is first done for each node and then a g
minimum is done to determine the time step for the next computational cycle. This is the last
that significantly sized messages are exchanged. (U)

A significant additional feature that needs to be addressed is the use of Lagrangian or trac
points. The code records data at tracer locations as the simulation progresses. The points 
either move with the bulk flow field or be fixed in space. Each tracer point is initially placed in
mesh based on the user supplied coordinates. If the tracer coordinates are in the interior of t
ume of space “owned” by a particular node, these coordinates are recorded by that node and
is set in the tracer data storage. This tracer’s coordinates in all other nodes will be recorded
(1.0e20, 1.0e20, 1.0e20), the upper right hand coordinate of the universe. Further, the locatio
will be set to indicate non-ownership by that node. This allows a quick check on whether or n
particular tracer is active in a given node. At the end of each cycle, the tracer positions (coo
nates) are updated by the nodes “owning” the tracers. Messages are then exchanged betwe
est neighbor nodes. After all six messages have been exchanged, all 27 nodes surroundin
actual position of the tracer know the true coordinates. These coordinates are then compare
the limiting coordinates for each node. If the tracer has migrated to a new node, the new co
nates are set in the tracer array and the tracer flag is reset to indicate ownership. The tracer
nates for all other nodes will be set to (1.0e20, 1.0e20, 1.0e20). There is no need to propag
coordinates to nodes beyond nearest neighbors since the time step controls prevent any tr
moving more than one cell width in any given time step. (U)

For a three-dimensional calculation, 24 of what we characterize as large messages are pas
ing the Lagrangian step, 48 large messages are also passed during the Eulerian step. A la
sage contains all cell variables on the face adjoining two nodes. For Sandia’s Intel Paragon

available node memory limits each node to sub-domains of ~243. Typical problems consist of 40-
80 variables per cell, therefore large messages are on the order of 200-400 kbytes. Severa
messages are also passed during the solution sequence. These messages are typically pa
ing the calculation of global sum and minimization processes. (U)

CTH MP Scaling Results

The serial version of CTH has been modified to allow for single program multiple data compu



PVM
dia/
wn as
o
ragon

f the

xed
econd
te
ptotic

-
rt-to-
n for
P
 read.
ro-
rind

e cell
ingle-

reases
ing per-
. For
f nodes.
tile
on parallel computers. To date, CTH has been tested on networks of workstations using the
library, an IBM SP2 using the MPI Library, the Intel Paragon running both SUNMOS (a San
UNM developed Operating System) and OSF using the native message passing library (kno
NX), PVM, and MPI, and a small scale (60 nodes) prototype of the ACSI Red machine (als
known as the Intel TeraFlop) using NX. The most extensive testing has been done on the Pa
and the results displayed for this paper are from the Paragon but should be typical for all o
machines described above. (U)

There are two ways of measuring performance on parallel computers, the first is to take a fi
problem size and monitor the run time as a function of the number of compute nodes, the s
is to keep the problem size per node fixed and monitor the run time as a function of compu
nodes. The first method has a natural limit in that as the work per node decreases, an asym
limit will be reached when the minimum number of cells per node (for CTH it is 27 for three
dimensional geometries) occurs. It is a useful measure in that it gives information about sta
completion time speed up for a fixed simulation. Table 1 displays data taken from the Parago
a two material single point initiation problem run in two-dimensional cylindrical geometry. M
computers suffer from a start-up penalty as the input is broadcast and initialization files are
The data in Table 1 has this start-up time removed for the calculation of the grind time. Hyd
codes have used a performance metric known as grind time for a number of years, where g
time is defined as the amount of cpu time necessary to complete all calculations on a singl
for a single time step. For three-dimensional simulations, high-end serial workstations and s
cpu vector supercomputers have grind times on the order of 100µs/zone-cycle. From the data in

Table 1 it can be clearly seen that an asymptote is being reached as the work per node dec
and the run times are dominated by the message passing. The second method for measur
formance is critical to proving a scalable decrease in grind time for large numbers of nodes
this test, the total problem size increases at the same rate as the increase in the number o
Table 2 displays data taken from the Paragon for a three material explosively formed projec

Table 1: CTH Fixed Problem Size Performance on MP Computers

Nodes
CPU Time

(s)
Grind Time

(µs/zone-cycle)
Cell per Node

4 1690 92.1 45,000

8 877 47.2 22,500

16 482 26.2 11,250

32 263 14.4 5,625

64 150 8.4 2,812

128 86 4.6 1,406

256 52 2.6 703

512 32 1.7 351



om an

 the
rallel
ine

re
aria-

 linear
ber of
Other
onds.
s
ance

 We
anges
ass-

the
arallel
e ASCI
problem run in three-dimensional rectangular geometry. Several points need to be noted fr

examination of Table 2. After the initial start-up time is overcome, the cpu time to complete
simulation is relatively constant. Furthermore, the start-up time is dominated by IO from pa
disks and across the inter-node network which depends heavily on the instantaneous mach
loading. The internal grind time calculations do not include the start-up times and are a mo
accurate indication of performance. All simulations were run as interactive jobs and some v
tion is to be expected due to varying system loads. From 8 thru 256 nodes, the grind time
decreases by a factor of 31.2 as the number of nodes increases by a factor 32 indicating a
scaling of performance. Due to constraints in node memory on Sandia’s Paragon, the num
cells per node was decreased to half of the previous simulations for the 1024 node problem.
tests on the entire machine (~1800 nodes) typically give grind times of 300 to 600 nanosec
Comparative tests with PCTH and CTH on identical problems show that CTH is 3 to 5 time
faster than PCTH. We attributed the bulk of this speed up to be due to the superior perform
(that is, maturity) of Fortran versus C++ compilers. (U)

Conclusions

We have successfully integrated message passing functions into the serial version of CTH.
drew upon the knowledge gained through the development of PCTH to implement these ch
in CTH and believe that it would have been extremely difficult to modify CTH for message p
ing without the trail-blazing work of Robinson (1992). We have shown scaled speed-up on 
Intel Paragon through 1800 nodes and also demonstrated the ability to maintain serial and p
code constructs in the same source code. If we extrapolate the Paragon performance to th
Red machine, we expect grind times to be below 10 nanoseconds per zone-cycle. (U)

Table 2: CTH Scaled Problem Size Performance on MP Computers

Nodes
CPU Time

(s)
Grind Time

(µs/zone-cycle)
Cell per Node

2 4127 319 27648

4 4639 179 27648

8 5287 102 27648

16 5193 50.2 27648

32 5152 24.9 27648

64 5119 12.4 27648

128 5222 6.3 27648

256 5503 3.3 27648

512 5307 1.3 27648

1024 - 0.57 13824



y
g

t-

h to

f

la-
References

Benson DJ, (1991)Momentum Advection on a Staggered Mesh. J. Comp. Phys. 100:1

McGlaun JM, Thompson SL, Kmetyk LN, Elrick MG, (1990)CTH: A Three-Dimensional Shock
Wave Physics Code. Int. J. Impact Engng. 10:351

McGlaun JM, Robinson AC, and Peery JS, (1995)The Development and Application of Massivel
Parallel Solid Mechanics Codes, 1995 International Conference on Computational Engineerin
Science, Mauna Lani, HI

Robinson AC, Ames AL, Fang HE, Pavlakos C, Vaughan CT, Campbell P, (1992),Massively Par-
allel Computing, C++ and Hydrocode Algorithms. Proceeding of the 8th Conference in Compu
ing in Civil Engineering, Dallas, TX.

van Leer B, (1977)Towards the Ultimate Conservative Difference Scheme IV. A New Approac
Numerical Convection. J. Comp. Phys. 23:276

Acknowledgment

This work performed at Sandia National Laboratories supported by the U. S. Department o
Energy under contract #DE-AC04-76DP000789.

The authors would also like to thank Elliot Fang and Marlin Kipp for their help in running simu
tions that are discussed in this paper.


	Multi-Processing CTH: Porting Legacy FORTRAN Code to MP Hardware��(U)
	Abstract
	Introduction
	Assumptions and Background
	Figure 1: CTH Mesh Decomposition Scheme

	CTH Solution Sequence and Message Passing Process
	CTH MP Scaling Results
	4
	1690
	92.1
	45,000
	8
	877
	47.2
	22,500
	16
	482
	26.2
	11,250
	32
	263
	14.4
	5,625
	64
	150
	8.4
	2,812
	128
	86
	4.6
	1,406
	256
	52
	2.6
	703
	512
	32
	1.7
	351
	2
	4127
	319
	27648
	4
	4639
	179
	27648
	8
	5287
	102
	27648
	16
	5193
	50.2
	27648
	32
	5152
	24.9
	27648
	64
	5119
	12.4
	27648
	128
	5222
	6.3
	27648
	256
	5503
	3.3
	27648
	512
	5307
	1.3
	27648
	1024
	-
	0.57
	13824
	Conclusions
	References
	Acknowledgment


